
Identification of genetic risk factors in the Chinese
population implicates a role of immune system in
Alzheimer’s disease pathogenesis
Xiaopu Zhoua,1, Yu Chena,b,c,1, Kin Y. Moka,d, Qianhua Zhaoe, Keliang Chene, Yuewen Chena,b,c, John Hardyd, Yun Lif,g,h,
Amy K. Y. Fua,b, Qihao Guoe,2, Nancy Y. Ipa,b,2, and for the Alzheimer’s Disease Neuroimaging Initiative3

aDivision of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong, China; bGuangdong Provincial Key Laboratory of Brain Science, Disease, and Drug Development,
Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, 518057 Guangdong, China; cThe Brain Cognition and Brain
Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, China; dDepartment of
Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; eDepartment of Neurology, Huashan
Hospital, Fudan University, 200040 Shanghai, China; fDepartment of Genetics, University of North Carolina, Chapel Hill, NC 27599; gDepartment of
Biostatistics, University of North Carolina, Chapel Hill, NC 27599; and hDepartment of Computer Science, University of North Carolina, Chapel Hill, NC 27599

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2015.

Contributed by Nancy Y. Ip, January 2, 2018 (sent for review September 6, 2017; reviewed by Michael P. Epstein, Alison Goate, and William Mobley)

Alzheimer’s disease (AD) is a leading cause of mortality among the
elderly. We performed a whole-genome sequencing study of AD in
the Chinese population. In addition to the variants identified in or
around the APOE locus (sentinel variant rs73052335, P = 1.44 ×
10−14), two common variants, GCH1 (rs72713460, P = 4.36 × 10−5)
and KCNJ15 (rs928771, P = 3.60 × 10−6), were identified and further
verified for their possible risk effects for AD in three small non-Asian
AD cohorts. Genotype–phenotype analysis showed that KCNJ15 var-
iant rs928771 affects the onset age of AD, with earlier disease onset
in minor allele carriers. In addition, altered expression level of the
KCNJ15 transcript can be observed in the blood of AD subjects.
Moreover, the risk variants ofGCH1 and KCNJ15 are associated with
changes in their transcript levels in specific tissues, as well as
changes of plasma biomarkers levels in AD subjects. Importantly,
network analysis of hippocampus and blood transcriptome datasets
suggests that the risk variants in the APOE, GCH1, and KCNJ15 loci
might exert their functions through their regulatory effects on
immune-related pathways. Taking these data together, we identi-
fied common variants of GCH1 and KCNJ15 in the Chinese popula-
tion that contribute to AD risk. These variants may exert their
functional effects through the immune system.
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Alzheimer’s disease (AD) is an age-related neurodegenera-
tive disease and a leading cause of mortality in the elderly.

Its prevalence is increasing rapidly with the aging population,
affecting more than 36 million people worldwide. A recent
meta-analysis revealed that the number of AD patients in
China increased from 1.9 million in 1990 to 5.7 million in 2010
(1). The pathophysiological mechanisms of AD are complex,
with genetic factors playing critical roles. Previous genetics
studies, including genome-wide association studies (GWAS),
candidate gene sequencing, and whole-exome sequencing have
identified several disease genes and risk alleles in AD (2).
Among the identified genetic risk factors for AD, a substantial
proportion of the genes are associated with immune path-
ways (3–8).
Most existing genetic data on AD are from Caucasian pop-

ulations, whereas information for the other ethnic populations is
limited. Susceptibility to certain genetic risk factors varies among
populations (9). Importantly, even for APOE-e4, the most con-
sistent risk factor for late-onset AD, the risk levels [i.e., odds ratios
(ORs)] vary among ethnic groups (10). Furthermore, recent small-
scale studies of Chinese populations report that not all of the AD
susceptibility SNPs identified in Caucasian populations can be

replicated in Chinese AD patients (11). Indeed, variations of the
prevalence of disease-associated genes in different pop-
ulations have also been observed in other neurodegenerative
diseases. For example, the Parkinson’s disease susceptibility
gene, MAPT, a major contributor to the disease in Caucasian
populations, is only weakly associated with the disease in the
Asian population (12, 13). Similarly, whereas the multiple
nonsynonymous variants of TREM2 are strongly associated
with AD in Caucasian populations (3, 4), these associations
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were not replicated in East Asian populations (14–16). On the
other hand, an independent variant in TREM2 (p. H157Y) has
been identified as a susceptibility missense mutation for AD
in a Chinese cohort (17).
Most genetic risk variants associated with diseases identified

from GWAS are located in the noncoding regions, with relatively
low disease penetrance. The biological functions of these non-
coding variants in diseases such as AD remain largely unknown
(18). However, the recent development of genotype–expression
analysis can correlate the genotype of AD risk variants with gene
transcript level in specific tissues (7); biomarker data, including
protein levels (19) or imaging data (20, 21) may provide insights
into the roles of these variants in specific biological pathways and
predict potential disease risk factors (22). Understanding the
effect of these variants in specific cellular contexts enables the
study of the functional consequences of these disease-risk genes.
Therefore, it is important to systematically investigate the

genetic risk factors for AD in populations of different ethnicities.
Furthermore, the successful implementation of genotype–
expression analysis for newly identified risk loci may enable us to
further investigate the underlying biological mechanism. Our
study identified that, in addition to variants in or near the APOE
locus, two loci—GCH1 and KCNJ15—are associated with AD.
Furthermore, the genotype–expression analyses reveal that these
AD risk loci are associated with the regulation of immune-
related gene networks in the hippocampus and blood, as well
as the changes in plasma biomarkers. These findings implicate a
role of immune-related pathways in the disease.

Materials and Methods
Subject Recruitment for the In-House Chinese AD Whole-Genome Sequencing
Cohort. For this study, we included a cohort of Chinese subjects who visited
the Department of Neurology or Memory Clinic, Huashan Hospital, Fudan
University, Shanghai, China from 2007 to 2016. There were a total of
972 subjects including 489 with AD, 260 with mild cognitive impairment
(MCI), and 223 age- and gender-matched normal controls (NCs). AD patients
were diagnosed on the basis of the recommendations of the National In-
stitute on Aging and the Alzheimer’s Association workgroup (23) and had an
onset age ≥50 y. Patients with MCI were diagnosed according to the
Peterson criteria (24). We excluded individuals with any significant neuro-
logic disease or psychiatric disorder. In addition, 250 NCs without subjective
memory complaints were recruited from the community in Shanghai. We
subjected all subjects to medical history assessment, neuropsychological as-
sessment, and imaging assessment including computed tomography (CT) or
magnetic resonance imaging (MRI). Some subjects also underwent positron
emission tomography using Pittsburgh compound B. This study was ap-
proved by the Ethics Committee of Huashan Hospital, the Hong Kong Uni-
versity of Science and Technology (HKUST), and the HKUST Shenzhen
Research Institute. All subjects provided written informed consent for both
study enrollment and sample collection.

CONVERGE Chinese Whole-Genome Sequencing Cohort. We included the
CONVERGE (China Oxford and Virginia Commonwealth University Experi-
mental Research onGenetic Epidemiology) whole-genome sequencing (WGS)
dataset (n = 10,640) to serve as a multicenter control to generalize the re-
sults (25). We applied an age filter of ≥55 y for the elderly population,
yielding 1,745 subjects (n = 1,745) for the downstream analysis.

WGS and Variant Calling Method. Low-coverage WGS (5× coverage) was per-
formed by Novogene. The genomic DNA libraries were sequenced on an
Illumina Hiseq × Ten platform, with 150-bp paired-end reads generated. The
researchers were blinded to phenotypic labels during the WGS process. For
variant detection, the Gotcloud pipeline (26) was adopted to detect variants
from our low-pass WGS data, comprising 1,348 samples, including 126 rese-
quenced samples. An average of 15-Gb Illumina sequencing data per subject
were generated, and data were subsequently subjected to FastQC (27) for
quality checking and Trimmomatic (28) for the trimming and filtering of low-
quality reads. Clean data were mapped to the GRCh37 reference genome
containing the decoy fragments using BWA-mem. After de-duplication and
clipping of the overlapped paired-end reads, BAM files were subjected to
samtools-hybrid, a specialized version of samtools, to generate glf files, which
store the marginal likelihoods for genotypes. glfFlex was adopted for the

population-based SNP calling, with a total of 24,742,555 single-nucleotide
variants obtained after variant calling. We applied hard-filtering methods
implemented in the Gotcloud pipeline as VcfCooker to filter low-confidant
variant calls on the basis of multiple metrics, such as distance, with known
insertion/deletion sites, allele balance, and mapping quality. We subjected
variants with high-confidence calls in the range of minor allele frequency
(MAF) ≥ 5% (n = 5,523,365; 22.3% of raw detected sites, 5,369,369 of which
were in autosomal chromosomes) to Beagle (29, 30) for phasing and using the
genotype likelihood information in chromosome-separated VCF files (See SI
Appendix, SI Materials and Methods for details).

To assess the accuracy of variant detection, we resequenced 126 of
1,222 samples (10.3% of all samples) using the same WGS protocol, together
with 96 samples (7.9% of total samples) genotyped using the AxiomGenome-
Wide CHB 1 and CHB 2 Array Plate Set (Affymetrix). See SI Appendix, SI
Materials and Methods for additional details.

Association Test and Data Visualization for GWAS. We performed association
tests between cases and controls using PLINK software with the following
parameters: –keep-allele-order, –assoc, –ci 0.95, –hwe 0.00001, and –maf
0.10 for the stage 1, stage 2, and stage 1+2 analyses. A genomic inflation
factor was generated on the basis of the χ2-values obtained from PLINK
results using R programming (31). In addition, to correct for population
stratification, we performed conditional logistical regression combined with
a genetic similarity score matching (GSM) model (32) or logistic regression
combined with phenotype-associated principal components generated from
EIGENSOFT smartpca (33). For GSM correction, pruned SNP sets with an
MAF > 10%were subjected to the software score_match (Linux) (-s alleleibs -k
2 -m 10000 -model additive -w 10 -U 5 -Ut 5), with matched results further
subjected to R for conditional regression test using clogit function. To visu-
alize the data, Manhattan plots and quantile–quantile plots were generated
using the R qqman package. Regional plots for individual loci were generated
using LocusZoom (34). To generate regional plots, association test results were
obtained from PLINK, with pairwise linkage disequilibrium (LD) information
generated from VCFtools using the –hap-r2 option.

Cohorts and Data for Replication Study. To verify our findings, we obtained
the following data: (i) The International Genomics of Alzheimer’s Project
(IGAP) summary statistics from stage 1 data (35); (ii) genotype, transcriptome,
and biomarker data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu/) (36); (iii) genotype and phenotype data
from the National Institute on Aging Alzheimer’s Disease Centers Cohort
(ADC) (phs000372.v2.p1) (37); and (iv) genotype and phenotype data from
the Late Onset Alzheimer’s Disease (LOAD) Family Study (phs000168.v2.p2)
(38). See SI Appendix, SI Materials and Methods for additional details.

Meta-Analysis and Data Visualization. We generated association results from
three AD cohorts (ADNI, LOAD, and ADC) using logistic regression with
phenotype-associated principal components generated from EIGENSOFT
smartpca, together with age and gender as covariates to obtain effect sizes
(log-ORs) and SEs. The analysis only included “definite AD” cases which were
specified in ADC and LOAD cohorts. The results were summarized and pro-
cessed by METASOFT (39) to estimate the joint risk effects as well as
significance levels under a random effects (RE) model (meta-P value or
random-effect P value). For transethnic meta-analysis combining both Chi-
nese and non-Asian datasets, Han and Eskin’s Random Effects model (39)
was applied. Analysis results were further subjected to ForestPMPlot (40) to
generate forest plots for data visualization.

Association Analysis for Candidate Sites in Transcriptome Data and in Plasma
and Cerebrospinal Fluid Biomarker Data. We retrieved genotype and ex-
pression data from the Genotype-Tissue Expression (GTEx) project (41, 42)
(www.gtexportal.org) in the database of Genotypes and Phenotypes
(dbGaP; phs000424.v6.p1). We used the R GenABEL package (43) for data
normalization, then mapped the regulatory effects of our candidate variants
using R coding and generated network analysis of the top regulatory genes
in STRINGdb (44). We examined the association of the candidate variants
with the plasma and cerebrospinal fluid biomarker data obtained from the
ADNI (SI Appendix, SI Materials and Methods).

Other Statistical Analyses and Data Visualization. We performed Cox re-
gression with gender and the top five principal components (PCs) to de-
termine the association between AD onset age and candidate variants by
using the coxph function from the survival package in R. We performed the
Spearman correlation test using the cor.test function in R. We used
ggsurvplot from the survMisc package to generate the survival plot. We
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generated bar charts, scatter plots, and line charts by using GraphPad Prism
version 6 (GraphPad software) (45). We used R lm function together with
Anova function from car package for ANCOVA analysis. Finally, we obtained
gene annotations from database evidence, with annotations for genomic
regions obtained from the University of California, Santa Cruz genome
browser (46) and annotations for transcript enrichment from the FANTOM
CAT data browser (47).

Power Calculation. According to the study design for the stage 1 analysis (NC:
442; AD: 477), power calculation was performed using Quanto (48). The
prevalence of AD was set at 3.3% on the basis of the latest epidemiological
report for AD in the Chinese population (5.5 million AD patients of
165.2 million subjects with age ≥60-y old; data were obtained from summary
results in 2010 with age ranging between 60 and 99 y) (1). The following
parameters were applied: outcome, disease; design, unmatched case–control
(1:0.9266); hypothesis, gene only; sample size, 477 cases; significance, 1 × 10−4,
two-sided; mode of inheritance, log-additive; population risk, 0.033.

Data Availability. The summary-level statistics for the reported variants (59 sites)
are available at: iplabdatabase.ust.hk/zhou_et_al_2017/GWAS_data.html. A
file containing allele frequencies for variants analyzed in this paper (MAF ≥
10%) is available through application via the above URL.

Results
Identification of AD Susceptibility Loci in the Chinese Population. We
recruited a Chinese AD cohort comprising 1,222 participants and
subjected them to low-pass WGS (5× coverage) (Fig. 1 and SI
Appendix, Table S1) (49). Our WGS data yielded 5,369,369 auto-
somal variants with an MAF ≥ 5%. Genotyping quality was
assessed by replicating the WGS with duplicate samples (n = 126),
array genotyping (n = 96), and genotyping of APOE-e4 variants
(rs429358 and rs7412) (n = 1,172) using independent aliquots of
genomic DNA; overall genotype concordance rates were 0.982,
0.991, and 0.980, respectively (SI Appendix, Tables S2–S4; see also
Materials and Methods and SI Appendix, SI Materials and Methods).
After 50 subjects were excluded during the quality-control steps
(Materials and Methods and SI Appendix, SI Materials and Methods),
the study population consisted of 477 AD subjects (AD group, n =
477), 253 with MCI (MCI group, n = 253), and 442 corresponding
age- and gender-matched NC subjects (NC group, n = 442). All of
the analyzed subjects were from the same center and had a similar
demographic background. A detailed analysis of ethnic attributes by
comparing the WGS data with 1000 Genomes phase 3 data (www.
internationalgenome.org/data) demonstrated that our cohort is part
of the East Asian ethnic group (SI Appendix, Figs. S1 and S2).
The statistical power of our in-house dataset for the identifi-

cation of AD risk variants with an odds ratio of 1.8 was 0.6073 for
an MAF of 0.10, and 0.2078 for an MAF of 0.05 (Materials and
Methods). Thus, a variant pool containing 4,082,229 sites with an
MAF ≥ 10% after filtering low-quality calls was retained for the
analysis of our in-house WGS data (stage 1), with a total of
403 variants showing nominal P < 1 × 10−4. To further increase
sample size, enhance statistical power, and verify the findings from
stage 1, we conducted the stage 2 analysis separately by using the
same AD samples from stage 1 (n = 477) with the CONVERGE
samples (n = 1,745, treated as population controls in contrast to
the age- and gender-matched cognitive normal controls in stage 1)
(Materials and Methods and SI Appendix) in the stage 2 analysis
(25). Of 403 sites, we successfully detected 377 concordant sites in
the CONVERGE dataset and 92 biallelic variants surviving from
the same nominal P value threshold of 1 × 10−4.
After controlling for the concordance of both allele orders

(i.e., ensuring minor alleles are consistent in the two stages) and
direction of effect [i.e., log(OR) has the same sign in both
stages], we applied a nominal P value threshold of 5 × 10−8 as the
final selection criteria in the combined analysis using all samples
(477 AD cases and 442 age- and gender-matched cognitive
normal controls from stage 1, with 1,745 population controls
from CONVERGE) to further enhance power (stages 1+2).
Furthermore, we removed one locus with an MAF that deviated

strongly in the in-house NC and CONVERGE dataset. Finally,
we obtained 59 variants located in the four loci that passed the
threshold: APOE, GCH1, LINC01413, and KCNJ15. Other than
confirmation of the well-studied APOE-e4 variant rs429358 (P =
4.1 × 10−64), the four sentinel variants were as follows: GCH1:
rs72713460, P = 4.0 × 10−8, OR = 1.74 (95% CI: 1.42–2.12);
LINC01413: rs2591054, P = 3.5 × 10−10, OR = 0.61 (95% CI:
0.53–0.71); APOC1: rs73052335, P = 3.5 × 10−72, OR = 4.27
(95% CI: 3.61–5.05); and KCNJ15: rs928771, P = 1.2 × 10−8,
OR = 1.59 (95% CI: 1.38–1.93) (Fig. 2A, Table 1, and SI Ap-
pendix, Table S5). Besides the APOE-e4 variant rs429358, the
analysis revealed multiple variants including the sentinel variant
rs73052335 near the APOE locus (SI Appendix, Table S5). The
variant rs73052335 was in LD (R2 = 0.70) with APOE-e4
rs429358 (Fig. 2B). Regarding the AD susceptibility variants
identified in the stage 1 analysis (i.e., APOC1 rs12721046,
SAMD4A-GCH1 rs17737822, KCNJ15 rs928771, and LINC01413
rs2591054), the combined analysis, which merged the controls
from the stage 1 and 2 datasets, further boosted the signals of
these loci (Fig. 2 B–D and SI Appendix, Table S5). Specifically,
the sentinel variants for the APOC1 locus shifted from
rs12721046 to rs73052335, while the sentinel variants for the
GCH1 locus shifted from rs17737822 to rs72713460 (Fig. 2 B and
C). Notably, we did not observe any inflation during the stage 1

Fig. 1. Study design schematic for the discovery of AD susceptibility loci.
HWE, Hardy–Weinberg equilibrium; PCA, principal-component analysis; QC,
quality control.
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analysis, as indicated by the quantile–quantile plot and the esti-
mated genomic inflation factor (λGC = 1.011, λ1000 = 1.025) (SI
Appendix, Fig. S3). Moreover, we showed that the presence of
effect alleles from the newly identified loci (GCH1, LINC01413,
and KCNJ15) were not correlated with age, gender, or batch ef-
fects in the combined control datasets (SI Appendix, Tables S6 and
S7), and was not obviously affected by population stratification
after correction using the GSM method (GCH1: rs72713460, ad-
justed P = 2.5 × 10−7; LINC01413: rs2591054, adjusted P = 3.7 ×
10−10; KCNJ15: rs928771, adjusted P = 3.2 × 10−8) (SI Appendix,
Table S8) (32). While in the stage 1+2 data, among the top 20

PCs, only the first and third were significantly associated with AD
(at nominal level P value threshold of < 0.05). Therefore, we se-
lected phenotype-associated PCs together with age and gender as
covariates to adjust for possible population stratification and batch
effects (50). Although the overall significance level decreased after
covariate adjustment, our candidates still reached the suggestive
association threshold (P < 5 × 10−5) (GCH1: rs72713460, adjusted
P = 4.36 × 10−5; LINC01413: rs2591054, adjusted P = 3.65 × 10−5;
KCNJ15: rs928771, adjusted P = 3.60 × 10−6), implying their as-
sociations with AD in Chinese population (Table 1 and SI Ap-
pendix, Tables S8 and S9).

Fig. 2. GWAS results in the Chinese AD WGS study. (A) Manhattan plots showing AD susceptibility loci discovered in the Chinese AD WGS dataset. Horizontal
lines represent the suggestive threshold (P = 1E−5, blue) and genome-wide threshold (P = 5E−8, red). The 59 sites that survived the genome-wide threshold in the
validation stage are shown as enlarged red dots, with gene symbols marked in the plot. (B–D) Regional association plots of the APOC1 (B), GCH1 (C), and KCNJ15
(D) loci. Horizontal lines separate the association results from the stage 1 and stage 1+2 analyses. Purple diamonds specify the sentinel variant in the corre-
sponding locus. Colors illustrate the LD measured as R2 between the sentinel variant and its neighboring variants. cMMb, centimorgans per megabase.

Table 1. GWAS results of AD susceptibility loci discovered in the Chinese AD cohort

CHR:BP (GRCh37) SNP_ID Nearest Gene(s) EA EAF (AD)

EAF (NC) Nominal P value
Final association results (adjusted

results)

Stage 1 Stage 1+2 Stage 1 Stage 1+2 Adjusted P value Effect size (SE)

14:55297043 rs72713460 GCH1 T 0.160 0.097 0.099 5.9E−05 4.0E−08 4.36E−05 0.594 (0.145)
15:57612410 rs2591054 LINC01413 C 0.683 0.773 0.779 1.8E−05 3.5E−10 3.65E−05 −0.447 (0.108)
19:45420082 rs73052335 APOC1 C 0.325 0.153 0.101 7.1E−18 3.5E−72 1.44E−14 0.870 (0.113)
21:39663760 rs928771 KCNJ15 G 0.238 0.154 0.161 6.0E−06 1.2E−08 3.60E−06 0.555 (0.120)

Statistical results of four sentinel variants (i.e., variants with the lowest nominal P values among four AD susceptibly loci from the validation stage). Stage 1
(AD: 477, NC: 442); Stage 1+2 (AD: 477, NC: 2,187). BP, base positions in GRCh37 annotation; CHR, chromosome(s); EA, effect alleles; EAF, effect allele
frequency.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1715554115 Zhou et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715554115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1715554115


Replication Study in Non-Asian AD Cohorts. To justify our finding
for the AD risk factors, we first examined the summary metrics
from the IGAP stage 1 study (sample size n = 17,008 and 37,154,
for AD and NC, respectively) (35). Of the three identified var-
iants, none have been reported to be significantly associated with
AD (P = 0.225, 0.793, and 0.349 for GCH1 rs72713460,
LINC01413 rs2591054, and KCNJ15 rs928771, respectively).
Meanwhile, a concordant sign of β (i.e., effect size) was observed
for KCNJ15 and GCH1 variants, implying a possible enrichment
of risk alleles of identified risk variants in the non-Asian AD
subjects [β = 0.594 (rs72713460-T) and 0.555 (rs928771-G) in the
present Chinese study; β = 0.025 (rs72713460-T) and 0.014
(rs928771-G) in the IGAP dataset].
Because the IGAP study included a proportion of AD cases

registered as “probable” or “possible” cases (35), we attempted to
verify our findings using a subset of cohorts from the IGAP study
(i.e., ADNI, ADC, and LOAD) by only retaining the subjects
categorized as “definite AD” as cases. Subsequent meta-analysis
to summarize the association results of the three sentinel AD risk
variants confirmed the AD risk effects ofGCH1 rs72713460 in the
non-Asian populations (meta-P = 1.55 × 10−2, OR = 1.109) (Fig.
3A and Table 2). Moreover, we observed a concordant trend of
the possible risk effect for the G allele of KCNJ15 rs928771 among
the three datasets, although this failed to pass the significance
threshold in the meta-analysis (meta-P = 1.19 × 10−1) (Fig. 3B and
Table 2). Although a concordant risk effect was observed for
LINC01413 variant rs2591054 in one of the non-Asian AD cohorts

(ADC, P = 8.27 × 10−3, OR = 0.963) (Table 2 and SI Appendix,
Fig. S4), an inconsistent risk effect was observed in other cohorts.
Therefore, additional genetic evidence is required to validate the
association between LINC01413 and AD.
Additional transethnic meta-analysis summarizing the results

from both the Chinese and non-Asian cohorts showed that our
candidates exhibited trends of associations with AD in the meta-
analysis (GCH1: rs72713460: meta-P = 2.53 × 10−4; KCNJ15:
rs928771, meta-P = 6.41 × 10−4) (Table 2 and SI Appendix, Table
S10). The results also showed heterogeneity across the Chinese
and non-Asian populations, as indicated by the shifting of values
in the heterogeneity measurements (I2 and Cochran’s Q-values)
(Table 2 and SI Appendix, Table S10).
Interestingly, although the meta-analysis failed to replicate the

risk effects of KCNJ15 rs928771, using the definite AD cases in
the LOAD dataset, we showed that KCNJ15 rs928771 exerts an
effect on the age of onset in AD. The minor allele G of variant
rs928771 was associated with the onset age of AD with a hazard
ratio (HR) of 1.197 (P = 0.0057, Cox regression model) (Fig.
3C); that is, AD subjects harboring two copies of the minor allele
exhibit an earlier disease onset age compared with subjects with
homozygous reference alleles (average onset age of AD:
73.4 and 71.2 y for rs928771 genotypes TT and GG, respectively)
(Fig. 3D). This finding further suggests a link between KCNJ15
risk variants or gene with AD pathogenesis.

Functional Implications of Identified Risk Loci from Transcriptome
and Biomarker Data. For the KCNJ15 AD risk locus, we found
that KCNJ15 transcript level was enriched in blood samples (P =
6.33 × 10−7, fold-enrichment: 10.6) (Fig. 4A), implying that this
gene plays roles in the peripheral circulatory system. Genotype
and phenotype association analysis of KCNJ15 transcript level in
the whole-blood transcriptome dataset revealed that the tran-
script level was significantly higher in the blood of the AD group
than the NC group (Fig. 4B, Left). Nonetheless, the sentinel AD
risk variant of KCNJ15, rs928771, was strongly associated with a
decrease of KCNJ15 transcript level in both the NC and AD
groups (Fig. 4B, Right). Interaction analysis in NC and AD
subjects using a linear regression model indicated a hint of a
negative interaction effect (effect size = −0.1278, P = 0.1601)
between the presence of AD and the rs928771 G allele dosages
for KCNJ15 transcript levels (SI Appendix, Fig. S5A). More
specifically, a strong association of KCNJ15 transcript level and
rs928771 G allele dosage was also observed in the MCI subjects
(effect size = −0.2890, P = 3.83 × 10−5) (SI Appendix, Fig. S5B),
and a positive correlation between KCNJ15 transcript level and
cognitive performance (indicated by Mini-Mental State Exami-
nation score) was observed in the AD cases (effect size = 1.6318,
P = 0.0294) (SI Appendix, Fig. S5C). These results suggest that
intrinsic factors, specifically genomic variations, as well as ex-
trinsic factors, specifically disease context, contribute to the
regulation of KCNJ15 gene expression in blood.
To further investigate the potential contributions of variant

rs928771 in AD subjects for blood-related traits, we examined
the association of AD patients’ plasma biomarker levels with
rs928771 genotypes. Interestingly, AD subjects showed geno-
type-dependent reductions of various immune-associated plasma
biomarkers, including decreased TNF-related apoptosis-inducing
ligand receptor 3 (TRAILR3), metallopeptidase inhibitor 1
(TIMP-1), and α-1-microglobulin (A1M) (Fig. 4C). Further in-
clusion of control subjects confirmed the effect of the KCNJ15
variant in the modulation of serum TRAILR3 levels, as evi-
denced by the concordant reduction of TRAILR3 level in AD
and NC subjects harboring rs928771 risk alleles. Moreover, for
TIMP-1 and A1M, they both exhibited phenotype-dependent
elevation of protein levels in AD subjects, implying their possible
roles in AD progression, which may be associated with KCNJ15
regulations (Fig. 4C and SI Appendix, Tables S11 and S12).

Fig. 3. Replication study in non-Asian AD cohorts. (A and B) Forest plots
representing the meta-analysis results of rs72713460 (GCH1; A) and rs928771
(KCNJ15; B) from non-Asian AD cohorts. Values of effect size (log OR) obtained
from independent datasets or metaresults are denoted by rectangles and di-
amonds, respectively. For the independent dataset, lines indicate the range of
95% confidence intervals, and the sizes of rectangles are proportional to the
weights used in the meta-analysis. For the meta-analysis results, the widths of
the diamonds cover the range of 95% confidence intervals. ADNI (AD: 515, NC:
339), ADC (AD: 3,946, NC: 1,746), and LOAD (AD: 464, NC: 2,231). GCH1
rs72713460: RE P = 1.55E−02, effect size = 0.1039; KCNJ15 rs928771: RE P =
1.19E−01, effect size = 0.0554. (C and D) Association of KCNJ15 with age at
onset of AD. (C) Survival plot of cumulative dementia-free probabilities in AD
subjects from the LOAD cohort stratified by rs928771 genotypes (P = 0.0057,
Cox proportional hazards model with adjustment for gender and top-5 PCs;
HR = 1.1974; n = 126, 204, and 125 for rs928771 genotypes TT, TG, and GG,
respectively). (D) Dot plot of individual age at AD onset stratified by KCNJ15
rs928771 genotype. Data are presented as mean ± SEM, *P < 0.05, ANCOVA
with Bonferroni correction [n = 126, 204, and 125; average (SD) onset age of
dementia = 73.4 (7.6), 73.0 (6.6), and 71.2 (6.8) for rs928771 genotypes TT, TG,
and GG, respectively; F = 6.35 for rs928771 genotype TT vs. GG in AD].
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The transcript level of GCH1 was enriched in hematopoietic
cells of the myeloid and B lymphoid lineages (P = 6.67 × 10−59,
fold-enrichment: 16.9) (Fig. 5A). Moreover, we observed geno-
type-dependent regulation ofGCH1 transcript level in the caudate
nucleus region of the brain (Fig. 5B). These findings suggest that
multiple systems or cell types in the brain and blood may be as-
sociated with GCH1 signaling. Our analysis of the genotype-
dependent regulation of plasma biomarkers in AD patients
identified the allele-dependent alterations of matrixmetallopro-
teinase-2 (MMP-2) in AD subjects (Fig. 5C and SI Appendix,
Tables S11 and S12).

Regulatory Roles of AD Susceptibility Loci in Immune-Associated
Signatures. To investigate the possible disease mechanisms of
the identified AD risk loci, we subjected the 52 variants at the
three AD risk loci (two from KCNJ15, one from GCH1, and the
remaining from APOE and the surrounding region) to a global
analysis of genotype–expression associations. Because AD is
associated with progressive memory loss and immune functions,
as evidenced by the identification of immune genes in Caucasian
GWAS (3–8), we specifically examined the possible regulatory
effects of the identified AD risk loci in the hippocampus and
blood. Primary investigations of genotype–expression associa-
tions revealed changes in the monocyte markers (APOE-locus
for CD68), MHC molecules (KCNJ15 for HLA-A), and epige-
netic modifier (GCH1 for HDAC1) in the hippocampus (Fig.
6A, Left). Meanwhile, for GCH1, we observed effects on the
regulation of an AD risk gene, clusterin, as well as complement
genes (C1QA, C1QB, and C1QC) in blood (Fig. 6A, Right).
These findings suggest that the identified AD risk loci regulate
immune signatures in the central nervous system and
peripheral blood.
Furthermore, network analysis revealed enrichment of pro-

tein–protein interactions among the genes that showed correla-
tions between their transcript level changes and the identified
AD risk variants (P values for protein–protein interactions in the
hippocampus and blood: P = 5.64 × 10−4 and 3.14 × 10−4, re-
spectively) (Fig. 6A). Next, we performed gene ontology (GO)
analysis for genes in the network. Interestingly, AD risk loci were
strongly associated with changes of the immune-associated gene
signatures in both the hippocampus and blood, as evidenced by
the enrichment of genes involving in cellular response to cyto-
kine stimulus [false-discovery rate (FDR) = 2.0 × 10−5] and in-
nate immune response (FDR = 5.6 × 10−4) in the hippocampal
network, as well as defense response (FDR = 3.6 × 10−6), innate
immune response (FDR = 1.3 × 10−5), and complement

activation (FDR = 2.0 × 10−4) in the blood network (Fig. 6B,
Right, and SI Appendix, Table S13). These findings suggest that
the identified AD risk loci may exert their effects in AD through
the regulation of immune-related pathways.

Replication of Caucasian Risk Loci in the Chinese WGS Dataset. We
examined the contributions of Caucasian AD GWAS risk vari-
ants in the Chinese AD cohort using the existing WGS data (SI
Appendix, Table S14). To ensure the accuracy of variant de-
tection, among the 21 known risk loci identified in AD meta-
analyses (35), we excluded five sites because of their low fre-
quency in the Chinese population (MAF < 5%). Among the
remaining 16 sites, based on our current data, only three showed
hints of association with AD (BIN1 rs6733839, adjusted P = 4.7 ×
10−2; CD2AP rs10948363, adjusted P = 4.5 × 10−2; FERMT2
rs17125944, adjusted P = 3.6 × 10−2) (SI Appendix, Table S14).
None of these three variants were located in repetitive regions,
indicating good detection quality. Furthermore, concordant risk
or protective effects were observed in both the Chinese and
Caucasian datasets (Caucasian and Chinese datasets, re-
spectively: BIN1 rs6733839-T, OR = 1.21 and 1.21; CD2AP
rs10948363-G, OR = 1.10 and 1.33; FERMT2 rs17125944-C,
OR = 0.76 and 0.79) (SI Appendix, Table S14). These findings
highlight the role of AD risk variants in multiple ethnic groups
and also imply that ethnicity potentially contributes to the ge-
netic basis of AD, as reflected by the observed differences in the
population frequencies or disease risk effects for the specific AD
risk variants studied herein.

Discussion
In this study, we comprehensively analyzed AD susceptibility loci
in WGS data obtained from an AD cohort of Han Chinese an-
cestry. Our study revealed several common AD genetic risk fac-
tors, including APOE, GCH1, and KCNJ15. We revalidated the
risk effects of the two identified risk loci, GCH1 (rs72713460) and
KCNJ15 (rs928771), either by genotype–phenotype association or
onset-age analysis in AD cases. Genotype–expression association
analysis enables us to investigate the roles of aforementioned AD
risk loci by demonstrating their effects on the regulation of genes
in the hippocampus and blood. The associations of the identified
AD risk loci and changes in the plasma biomarkers suggest that
these loci have functional outcomes in the peripheral immune
system of AD patients.
APOE is a well-accepted genetic marker for late-onset AD,

and the e4 allele of the APOE gene is the strongest genetic risk
factor for the disease (51, 52). While previous GWAS show the

Table 2. Replication study of AD susceptibility loci in multiple datasets

Variants Genes Cohorts P value Effect size SE

Meta (REs)

I2 Q P value (Q) Tau2P value Log OR (±SD) OR

rs72713460* GCH1 ADNI 9.60E−02 0.2154 0.1294 1.55E−02 0.1039 (±0.0429) 1.109 0.000 0.987 0.610 0.000
ADC 1.44E−01 0.0788 0.0539
LOAD 1.64E−01 0.1181 0.0849

rs928771 KCNJ15 ADNI 7.44E−01 0.0338 0.1035 1.19E−01 0.0554 (±0.0356) 1.057 0.000 0.051 0.975 0.000
ADC 1.93E−01 0.0574 0.0441
LOAD 4.11E−01 0.0607 0.0738

rs2591054 LINC01413 ADNI 5.59E−01 0.0630 0.1077 5.19E−01 −0.0375 (±0.0581) 0.963 50.398 4.032 0.133 0.005
ADC† 8.27E−03 −0.1167 0.0442
LOAD 8.17E−01 0.0170 0.0733

Three previously published GWAS AD cohorts with clinically diagnosed AD cases and healthy NCs were included into the meta-analysis: ADNI (AD: 515, NC:
339), ADC (AD: 3,946, NC: 1,746), and LOAD (AD: 464, NC: 2,231). Effect size and SE are shown accordingly. Meta-P values were obtained from the METASOFT
program on the basis of the estimation of the RE model. I2, I-square heterogeneity statistic; Q, Cochrane’s Q statistic; Tau2, Tau-square heterogeneity
estimator of DerSimonian–Laird.
*Variant(s) with P < 5E−2/3 = 1.6E−2 in the meta-analysis results.
†Statistical metrics with P < 5E−2/3 = 1.6E−2 in the corresponding cohorts.
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existence of multiple AD-risk variants in and around the APOE
region (53–55), adoption of the WGS method enabled a com-
prehensive examination of this locus, obtaining fine-mapping
results of the variants that are associated with AD risk as well as
the magnitude of LD between variants (SI Appendix, Tables
S5 and S9). A previous fine-mapping study using the Sanger
genotyping method conducted in a Japanese AD cohort reported
multiple hints and haplotypes in the APOE locus that are asso-
ciated with AD (56). By utilizing the WGS method, we not only
obtained a larger AD-risk variant pool including the sentinel
variant rs73052335, but also observed a similar AD-associated
genomic structure among Chinese and Japanese populations in
this region (indicated by the distributions of both P values and
recombination hot spots) (Fig. 2B) (56), demonstrating the ad-
vantages of the WGS method in resolving genomic structures in
the disease context, and a similar genetic mechanism for AD
among Chinese and Japanese for the APOE locus.

In our study, GCH1 and KCNJ15 were identified as genetic
risk loci for AD. GCH1 encodes the enzyme GTP cyclohydrolase
I, which is a rate-limiting enzyme for the biosynthesis of tetra-
hydrobiopterin (THB, BH4); the protein is critical for the gen-
eration of monoamine neurotransmitters such as serotonin
(5-HT) and dopamine, as well as nitric oxide. Mutations of GCH1
are associated with multiple neuronal disorders including dopa-
mine-responsive dystonia (57–59), neuropathic pain (60, 61), and
Parkinson’s disease (62–64). GCH1 is also implicated in cardio-
vascular functions, as suggested by the associations of genetic
variants with endophenotypes, including nitric oxide excretion
and cardiac autonomic traits (65). The association of GCH1
rs72713460 with the change in the levels of plasma MMP-2 sug-
gests that GCH1 may play a role in the immune system or amy-
loid-β–associated metabolic pathway in addition to modulating
neurotransmitter levels (66, 67).
Meanwhile, KCNJ15 is a member of the potassium voltage-

gated channel family and is located in the Down syndrome
chromosome region-1; it has been reported to be associated with
type 2 diabetes mellitus (T2DM) in the Japanese population (68,
69). KCNJ15 also plays roles in glucose response, insulin secre-
tion, and blood-related traits (70–72). The effect of sentinel AD
risk variant of KCNJ15, rs928771, on the age at onset of AD,
suggests its potential effect on AD pathogenesis or progression.
Interestingly, KCNJ15 variant rs3746876, the protective variant
for T2DM, is in proximity to rs928771 (∼8 kb apart in this study
and ref. 69). These two sites are in weak LD (R2 = 0.013, D′ =
1.0; 1000 Genomes data CHB + JPT), and their minor alleles
may be located in separate haplotypes. Haplotype analysis of the
KCNJ15 gene may help to dissect the contributions of KCNJ15 to
AD and T2DM. It would be interesting to examine whether
KCNJ15 exerts its effect on AD or T2DM in East Asians through
independent or convergent mechanisms.
The genotype–expression association analysis highlights a role

of the KCN15 variant rs928771 in the modulation of KCNJ15

Fig. 5. Functional evidence of GCH1 in AD. (A) GCH1 transcript was most
abundant in the hematopoietic cells among all samples as suggested by
lowest P value of enrichment (P = 6.67E−59, fold-enrichment = 16.9;
163 hematopoietic cell samples in 581 total samples). The figure was adop-
ted from the FANTOM CAT database. (B) Associations between GCH1 tran-
script levels and GCH1 rs72713460 genotypes in the brain caudate region
(n = 57, 34, and 3 for rs72713460 genotypes GG, GT, and TT, respectively).
Data are presented as mean ± SEM, *P < 0.05 (F = 6.58); ANCOVA with
Bonferroni correction. (C) GCH1 rs72713460 genotype is associated with
plasma MMP-2 levels. Levels of MMP-2 in AD cases and NCs [AD: n = 64, 32,
and 7; NC: n = 37, 19, and 1 (removed from analysis) for rs72713460 geno-
types GG, GT, and TT, respectively]. Data are presented as mean ± SEM **P <
0.01 (F = 8.59); ANCOVA with Bonferroni correction.

Fig. 4. Functional evidence of KCNJ15 in AD. (A) Among different tissue
samples, the KCNJ15 transcript was most abundant in blood as suggested by
the lowest P value of enrichment (P = 6.33E−7, fold-enrichment = 10.6;
nine blood samples in 735 total samples). The figure was adopted from the
FANTOM CAT database. (B) Genotype- and phenotype-dependent regula-
tion of KCNJ15 transcript level in blood transcriptome data. (Left) Increased
KCNJ15 transcript level in the whole blood of AD subjects (NC: 244, MCI: 369,
AD: 106). Data are presented as mean ± SEM **P < 0.01, *P < 0.05, ANCOVA
with Bonferroni correction (F = 10.38 and 5.93, for AD vs. NC, AD vs. MCI,
respectively). (Right) The change of KCNJ15 transcript level in whole blood is
associated with KCNJ15 rs928771 genotypes in NC and AD subjects; data are
presented as mean ± SEM, *P < 0.05 for NC subjects (n = 77, 114, and 53 for
rs928771 genotypes TT, TG, and GG, respectively; F = 8.22, for rs928771 TT vs.
GG in NC). ##P < 0.01, ###P < 0.001 for AD subjects, ANCOVA with Bonferroni
correction (n = 28, 49, and 29 for rs928771 genotypes TT, TG, and GG, re-
spectively; F = 13.55, 10.21 for rs928771 genotypes TT vs. GG, TG vs. GG,
respectively). (C) Associations between KCNJ15 rs928771 genotype and
biomarker levels in AD cases and NCs. Data are presented as mean ± SEM.
Test for genotypes, **P < 0.01, ***P < 0.001; test for phenotypes, ###P <
0.001 (AD: n = 31, 46, and 26; NC: n = 23, 23, and 11 for rs928771 genotypes
TT, TG, and GG, respectively), ANCOVA with Bonferroni correction. cpm,
counts per million mapped reads.
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transcript level in the blood. Meanwhile, the opposite effect was
observed between genotype and phenotype: the KCNJ15 tran-
script level was elevated in AD but is down-regulated by the risk
G allele of rs928771 in all phenotypic groups (Fig. 4). Because
the risk allele G is associated with both advanced onset of AD
and lower KCNJ15 transcript level, and because the KCNJ15
transcript level is positively associated with individual cognitive
performance (Figs. 3 and 4 and SI Appendix, Fig. S5), KCNJ15
expression in the blood may confer a protective effect during AD
progression. Specifically, the plasma biomarker analysis in AD
subjects revealed the modulatory effects of rs928771 in in-
flammation (i.e., A1M) (Fig. 4), Aβ metabolism (modulation
of ADAM10 activity by TIMP-1) (73), and cell homeostasis
(TRAILR3 and TIMP-1) (74, 75). Therefore, it is of interest to
study the effect of KCNJ15 variants in inflammatory response,
which may contribute to the pathogenesis of AD.
Our transcriptome and biomarker studies suggest that GCH1

and KCNJ15 are highly expressed in the immune system and are
involved in immune-related events. This is congruent with pre-
vious findings showing an etiological role of the immune system

on AD, including the identification of rare TREM2 variants (3,
4), risk genes marked by the common variants from Caucasian
GWAS (7, 35), and the latest report for rare coding variants in
PLCG2 and ABI3 identified from Caucasian AD patients (8).
Modulations of immune signatures or biomarker levels in blood
led by identified AD risk variant, as well as enriched expression
of GCH1 and KCNJ15 in the blood or blood cells, further sup-
ports the roles of immune pathways, specifically in the peripheral
circulatory system, in AD. Interestingly, previous studies show
that alterations of genetic signatures in the peripheral circulatory
system are associated with several brain disorders, including
autism (76), Parkinson’s disease (77), and schizophrenia (78).
Thus, comprehensive profiling of peripheral biomarkers in AD
patients, including transcript, protein, or metabolite levels, may
benefit the prediction and monitoring of AD.
In conclusion, we successfully implemented the low-pass WGS

method to identify two AD susceptibility loci represented by
common disease-associated variants in the Chinese population.
Moreover, genotype–expression association analysis suggests
that the identification of the genetic variants may not only

Fig. 6. Enrichment of immune-associated context in the regulatory network of AD risk loci. Association of candidate target genes with AD risk loci by global
genotype-expression analysis. (A) Interaction network of the target genes regulated by the AD susceptibility loci in the hippocampus (n = 87, Left) and blood
(n = 365, Right). Each circle represents a target gene, with different colors specifying the corresponding AD risk loci. Lines between circles indicate gene–gene
interactions. The strength of the pairwise interaction between the target genes is reflected by the color intensity of the lines. (B) GO analysis of the target
genes. Representative enriched GO terms for target genes from hippocampal data (Left) and blood data (Right) are shown; x axis indicates the corresponding
FDR (in log10 scale), with corresponding ontology categories marked on the y axis.
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provide genetic information about AD, but also the information
about functional effects of these genetic variants in the patho-
genesis of the disease.
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